物体识别的步骤
特征提取是物体识别的一步,也是识别方法的一个重要组成部分,好的图像特征使得不同的物体对象在高维特征空间中有着较好的分离性,从而能够有效地减轻识别算法后续步骤的负担,达到事半功倍的效果,下面对一些常用的特征提取方法进行介绍。
近年来,子空间方法,如主成分分析(PCA),辨别成分分析(LDA),也成为 一种相对重要的特征提取手段。这种方法将图像拉长成为高维空间的向量,并进行奇异值分解以得到特征方向。人脸识别便是其较为成功的应用范例。此类方法能处理有全局噪声的情况,并且模型相当简单易实现;然而这种算法割裂了图像的内部结构,因此在本质上是非视觉的,模型的内在机制较难令人理解,也没有任何机制能消去施加于图像上的仿射变换。
物体识别的步骤
图像特征提取就是提取出一幅图像中不同于其他图像的根本属性,以区别不同的图像。如灰度、亮度、纹理和形状等等特征都是与图像的视觉外观相对应的;而还有一些则缺少自然的对应性,如颜色直方图、灰度直方图和空间频谱图等。基于图像特征进行物体识别实际上是根据提取到图像的特征来判断图像中物体属于什么类别。形状、纹理和颜色等特征是较常用的视觉特征,也是现阶段基于图像的物体识别技术中采用的主要特征。
物体识别的性能评估方法
判定物体识别的性能通常采用PR曲线。其中P(Precision)指精度(准确率),一般为y轴;R(Recall)指识别率(召回率),一般为x轴。
P=(识别正确的结果)/(所有识别结果);R=(识别正确的结果)/(实际上正确的结果)。识别结果的类型如下:
一个好的识别方法应该同时具备高的准确率与高的召回率。准确率等于0.5是一个界限,当精度低于0.5时,说明该方法的效率己经低于随机猜测的结果,(因为随机猜测的准确率为0.5)。除了PR曲线,也有文献使用其它曲线来度量识别结果,如ROC曲线或FPPW等。物体识别的困难与前景
虽然物体识别已经被广泛研究了很多年,研究出大量的技术和算法,物体识别方法的健壮性、正确性、效率以及范围得到了很大的提升,但是现在依然存在一些困难以及识别障碍。这些困难主要有:
获取数据问题:
在不同的视角对同一物体也会得到不同的图像,物体所处的场景的背景以及物体会被遮挡,背景杂物一直是影响物体识别性能的重要因素,场景中的诸多因素,如光源、表面颜色、摄像机等也会影响到图像的像素灰度,要确定各种因素对像素灰度的作用大小是很困难的,这些使得图像本身在很多时候并不能提供足够的信息来恢复景物。
以上就是关于北京物体识别设备服务为先「华奕科技」新金瓶梅剧照全部的内容,关注我们,带您了解更多相关内容。